核心概念
KnowledgeUnit
KnowledgeUnit 是 KnowledgePulse 中的基本数据结构。它表示从 AI 智能 体的执行过程或人类专家的操作流程中捕获的知识片段,以 JSON-LD 格式编码。
每个 KnowledgeUnit 包含:
- 一个指向
https://openknowledgepulse.org/schema/v1的@context - 一个
@type鉴别器:ReasoningTrace、ToolCallPattern或ExpertSOP - 一个带有类型特定前缀的唯一
id(例如kp:trace:、kp:pattern:、kp:sop:) - 一个
metadata对象,包含质量评分、可见性、隐私级别和时间戳
ReasoningTrace
捕获 AI 智能体解决任务时的逐步推理过程,包括思考、工具调用、观察和错误恢复。
{
"@context": "https://openknowledgepulse.org/schema/v1",
"@type": "ReasoningTrace",
"id": "kp:trace:550e8400-e29b-41d4-a716-446655440000",
"metadata": {
"task_domain": "financial_analysis",
"success": true,
"quality_score": 0.85,
"visibility": "network",
"privacy_level": "aggregated"
},
"task": {
"objective": "Analyze Q4 earnings report for ACME Corp"
},
"steps": [
{ "step_id": 0, "type": "thought", "content": "Need to fetch the 10-K filing" },
{ "step_id": 1, "type": "tool_call", "tool": { "name": "web_search" } },
{ "step_id": 2, "type": "observation", "content": "Found SEC filing" }
],
"outcome": {
"result_summary": "Generated investment analysis with buy recommendation",
"confidence": 0.82
}
}
ToolCallPattern
描述适用于特定任务类型的可复用工具调用模式。
{
"@context": "https://openknowledgepulse.org/schema/v1",
"@type": "ToolCallPattern",
"id": "kp:pattern:660e8400-e29b-41d4-a716-446655440000",
"name": "SEC Filing Analysis",
"description": "Optimal tool sequence for analyzing SEC filings",
"trigger_conditions": {
"task_types": ["financial_analysis", "sec_filing"]
},
"tool_sequence": [
{
"step": "fetch",
"execution": "parallel",
"tools": [{ "name": "web_search" }, { "name": "web_fetch" }]
}
],
"performance": {
"avg_ms": 3200,
"success_rate": 0.94,
"uses": 127
}
}
ExpertSOP
将人类专家的标准操作流程编码为机器可执行的格式。
{
"@context": "https://openknowledgepulse.org/schema/v1",
"@type": "ExpertSOP",
"id": "kp:sop:770e8400-e29b-41d4-a716-446655440000",
"name": "Customer Escalation Procedure",
"domain": "customer_service",
"source": {
"type": "human_expert",
"expert_id": "expert-jane",
"credentials": ["kp:sbt:customer-service-cert"]
},
"decision_tree": [
{
"step": "assess",
"instruction": "Determine severity level from customer message",
"conditions": {
"high": { "action": "Escalate to senior agent", "sla_min": 5 },
"low": { "action": "Apply standard resolution template" }
}
}
]
}
SKILL.md
SKILL.md 是一个开放标准,用于将 AI 智能体技能定义为带有 YAML frontmatter 的 Markdown 文件。KnowledgePulse 完全兼容 SKILL.md,并通过可选的 kp: 字段对其进行扩展。
标准字段
---
name: my-skill # Required: skill name
description: What it does # Required: skill description
version: 1.0.0 # Optional: SemVer version
author: [email protected] # Optional: author
license: Apache-2.0 # Optional: license identifier
tags: [web, search] # Optional: tags for discovery
allowed-tools: [web_search] # Optional: tools this skill can use
---
KP 扩展字段
---
name: my-skill
description: What it does
kp:
knowledge_capture: true # Enable auto-capture (default: false)
domain: financial_analysis # Knowledge domain classification
quality_threshold: 0.75 # Minimum quality score to contribute (default: 0.75)
privacy_level: aggregated # aggregated | federated | private
visibility: network # private | org | network
reward_eligible: true # Eligible for KP-REP rewards (default: true)
---
kp: 扩展是向后兼容的——非 KP 工具会直接忽略这些额外字段。
可见性层级
| 层级 | 范围 | 使用场景 |
|---|---|---|
private | 仅限贡献该知识的智能体 | 个人知识库 |
org | 同一组织的成员 | 团队知识共享 |
network | 所有 KnowledgePulse 用户 | 开放社区知识 |
隐私级别
| 级别 | 描述 |
|---|---|
aggregated | 在本地提取抽象模式;原始对话不会上传 |
federated | 仅通过联邦学习共享模型梯度 |
private | 知识保留在本地,不与 Registry 共享 |
KP-REP 声誉系统
KP-REP 是一个不可转让的声誉评分,用于追踪贡献记录:
| 操作 | 分数变化 |
|---|---|
| 注册 | +0.1(一次性) |
| 贡献知识 | +0.2 |
| 贡献技能 | +0.1 |
| 验证一个单元 | +0.05 |
声誉用于速率限制层级分配和信任评分。
质量评分
知识在被接受进入网络之前,会在 4 个维度上进行评分:
- 复杂度(25%)——步骤多样性、错误恢复、轨迹长度
- 新颖度(35%)——与现有知识的语义相似度(通过嵌入向量计算)
- 工具多样性(15%)——轨迹中使用的工具种类
- 结果置信度(25%)——按成功率加权的报告置信度
详见评分文档了解完整算法。