跳到主要内容

核心概念

KnowledgeUnit

KnowledgeUnit 是 KnowledgePulse 中的基本数据结构。它表示从 AI 智能体的执行过程或人类专家的操作流程中捕获的知识片段,以 JSON-LD 格式编码。

每个 KnowledgeUnit 包含:

  • 一个指向 https://openknowledgepulse.org/schema/v1@context
  • 一个 @type 鉴别器:ReasoningTraceToolCallPatternExpertSOP
  • 一个带有类型特定前缀的唯一 id(例如 kp:trace:kp:pattern:kp:sop:
  • 一个 metadata 对象,包含质量评分、可见性、隐私级别和时间戳

ReasoningTrace

捕获 AI 智能体解决任务时的逐步推理过程,包括思考、工具调用、观察和错误恢复。

{
"@context": "https://openknowledgepulse.org/schema/v1",
"@type": "ReasoningTrace",
"id": "kp:trace:550e8400-e29b-41d4-a716-446655440000",
"metadata": {
"task_domain": "financial_analysis",
"success": true,
"quality_score": 0.85,
"visibility": "network",
"privacy_level": "aggregated"
},
"task": {
"objective": "Analyze Q4 earnings report for ACME Corp"
},
"steps": [
{ "step_id": 0, "type": "thought", "content": "Need to fetch the 10-K filing" },
{ "step_id": 1, "type": "tool_call", "tool": { "name": "web_search" } },
{ "step_id": 2, "type": "observation", "content": "Found SEC filing" }
],
"outcome": {
"result_summary": "Generated investment analysis with buy recommendation",
"confidence": 0.82
}
}

ToolCallPattern

描述适用于特定任务类型的可复用工具调用模式。

{
"@context": "https://openknowledgepulse.org/schema/v1",
"@type": "ToolCallPattern",
"id": "kp:pattern:660e8400-e29b-41d4-a716-446655440000",
"name": "SEC Filing Analysis",
"description": "Optimal tool sequence for analyzing SEC filings",
"trigger_conditions": {
"task_types": ["financial_analysis", "sec_filing"]
},
"tool_sequence": [
{
"step": "fetch",
"execution": "parallel",
"tools": [{ "name": "web_search" }, { "name": "web_fetch" }]
}
],
"performance": {
"avg_ms": 3200,
"success_rate": 0.94,
"uses": 127
}
}

ExpertSOP

将人类专家的标准操作流程编码为机器可执行的格式。

{
"@context": "https://openknowledgepulse.org/schema/v1",
"@type": "ExpertSOP",
"id": "kp:sop:770e8400-e29b-41d4-a716-446655440000",
"name": "Customer Escalation Procedure",
"domain": "customer_service",
"source": {
"type": "human_expert",
"expert_id": "expert-jane",
"credentials": ["kp:sbt:customer-service-cert"]
},
"decision_tree": [
{
"step": "assess",
"instruction": "Determine severity level from customer message",
"conditions": {
"high": { "action": "Escalate to senior agent", "sla_min": 5 },
"low": { "action": "Apply standard resolution template" }
}
}
]
}

SKILL.md

SKILL.md 是一个开放标准,用于将 AI 智能体技能定义为带有 YAML frontmatter 的 Markdown 文件。KnowledgePulse 完全兼容 SKILL.md,并通过可选的 kp: 字段对其进行扩展。

标准字段

---
name: my-skill # Required: skill name
description: What it does # Required: skill description
version: 1.0.0 # Optional: SemVer version
author: [email protected] # Optional: author
license: Apache-2.0 # Optional: license identifier
tags: [web, search] # Optional: tags for discovery
allowed-tools: [web_search] # Optional: tools this skill can use
---

KP 扩展字段

---
name: my-skill
description: What it does
kp:
knowledge_capture: true # Enable auto-capture (default: false)
domain: financial_analysis # Knowledge domain classification
quality_threshold: 0.75 # Minimum quality score to contribute (default: 0.75)
privacy_level: aggregated # aggregated | federated | private
visibility: network # private | org | network
reward_eligible: true # Eligible for KP-REP rewards (default: true)
---

kp: 扩展是向后兼容的——非 KP 工具会直接忽略这些额外字段。

可见性层级

层级范围使用场景
private仅限贡献该知识的智能体个人知识库
org同一组织的成员团队知识共享
network所有 KnowledgePulse 用户开放社区知识

隐私级别

级别描述
aggregated在本地提取抽象模式;原始对话不会上传
federated仅通过联邦学习共享模型梯度
private知识保留在本地,不与 Registry 共享

KP-REP 声誉系统

KP-REP 是一个不可转让的声誉评分,用于追踪贡献记录:

操作分数变化
注册+0.1(一次性)
贡献知识+0.2
贡献技能+0.1
验证一个单元+0.05

声誉用于速率限制层级分配和信任评分。

质量评分

知识在被接受进入网络之前,会在 4 个维度上进行评分:

  1. 复杂度(25%)——步骤多样性、错误恢复、轨迹长度
  2. 新颖度(35%)——与现有知识的语义相似度(通过嵌入向量计算)
  3. 工具多样性(15%)——轨迹中使用的工具种类
  4. 结果置信度(25%)——按成功率加权的报告置信度

详见评分文档了解完整算法。